
Math 251 Sections 1,2,10 Lect Notes 9/24/09

Exercises 34-42 in Section 3.3 of your textbook are related to the the so-called Euler ODE:

at2y′′ + bty′ + cy = 0, a, b, c are constants t > 0.

Since these ODE’s are solved in a manner very similar to the linear constant coefficient homogeneous ODE’s that
we have been working on in this chapter, it is worthwhile having a look at them as well. In order to be able to
completely discern the connections between the two, it is necessary to use a different symbol for the independent
variable in this discusssion. Let’s use x. That is, we consider

ax2 d
2y

dx2 + bx
d2y

dx2 + cy = 0, a, b, c are constants t > 0.

This linear homogeneous ODE has the coefficients which are constants multiplied by decreasing powers of x as one
reads the equation from left to right. One suspects that this equation may have a solution of the form y = xr. This
can be verified by plugging in y = xr and observing that the result is a polynomial times xr. Polynomial is called
the indicial polynomial.

So let us try to find the indicial polynomial. Set y = xr. Then dy
dx

= rxr−1 and d2y
dx2 = r(r − 1)xr−2. Now plug

this into the Euler ODE above:

L[xr] = ax2
(
r(r − 1)xr−2

)
+ bx

(
rxr−1

)
+ c (xr) = 0

Factoring xr from each term gives the following

(ar(r − 1) + br + c)xr = 0

That is the indicial polynomial is
ar2 + (b− a)r + c

Consider the following example to see how this works in practice.

x2 d
2y

dx2 − x
dy

dx
− 8y = 0, t > 0.

Then the indicial polynomial is r2 + (−1 − 1)r − 8 = (r − 4)(r + 2) and we can easily check by plugging into the
Euler ODE that y1 = x4 and y2 = x−2 are two solutions, as predicted. By viewing their graphs we conclued that
they are not multiples of each other. So the general solution is that y = c1x

4 + c2x
−2.

Now let’s look at an example where the indicial polynomial has double roots:

x2 d
2y

dx2 − x
dy

dx
+ y = 0, t > 0.

Indeed, rhe indicial polynomial is r(r − 1) − r + 1 which has a double root r1 = 1. Thus we see that y1 = x
solves this Euler ODE. However, at this point we have no idea about another solution which is not just a constant
multiple.
So we appeal to Abel’s formula for the Wronskian

W = exp
(
−
∫
−x−1 dx

)
= C1x

and we choose C1 = 1.
Now according to the defintion of the Wronskian of y1 = x and y2 is

W (t, y2) = det

(
x y2

1 dy2
dx

)
= x

dy2
dx

− y2 = x

This gives an easily solved first order linear ODE for y2:

dy2
dx

− 1
x
y2 = 1



The integrating factor for this linear ODE is µ = x−1 Therefore

d

dx

(
y2x
−1
)

= x−1

We have
y2 = x lnx+Dx

or simply y2 = x lnx
The similarity between the constant coefficient linear ODE and Euler’s ODE is remarkable and for this reason one
suspects a connection between the two. In fact, the connection is explicitly suggested by the fact that in the case
of double roots for the characteristic polynomial we multiply the first solution by a t to get the second one and if
the indicial polynomial has double roots we multiply the first solution by lnx to get the second. Indeed let us take
the last Euler equation and apply to it the following substitution for the variable x.

t = lnx or equivalently x = et x > 0.

We use the chain rule to compute the derivative of y with respect to x in terms of the derivative of y with respect
to t and the derivative of t with respect to x:

dy

dx
=
dy

dt

1
x

We find the formula relating the the second derivative of y with respect to the two different variables by applying
the product rule and chain rule to the above

dy2

dx2 =
d

dx

(
dy

dt

)
1
x

+
dy

dt

d

dx

1
x

=
dy2

dt2
1
x2 −

dy

dt

1
x2

Now let’s plug these into the Euler ODE above rewritten here:

x2 d
2y

dx2 − x
dy

dx
+ y = 0, t > 0.

We get

x2

(
dy2

dt2
1
x2 −

dy

dt

1
x2

)
− x

(
dy

dt

1
x

)
+ y = 0

Simplifying gives
dy2

dt2
− 2

dy

dt
+ y = 0

which has two solution w1 = et and w2 = tet and which confirms the equivalence of the two ODE’s when subjected
to this substitution of variables.
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