
Math 251 Sections 2,10,11 Lect Notes 9/22/08

Having defined the complex exponential function and having seen that if satisfies the same differentiation rule as
the real exponential function:

d

dt
eγt = γeγt

enables us to immediately solve those linear homogeneous constant coefficient whose characteristic polynomial has
complex roots.
So we consider a linear constant coefficient homogeneous second order ODE which we write as

ay′′ + by′ + cy = 0

We assume that the the characteristic polynomial ar2 + br + c has complex roots γ and γ. Also in this case a
fundamental pair y1, y2 can be obtained by taking real and imaginary parts of of eγt. This is true for the same
reason that it was true when γ was real.
Here, since

γ = α+ iβ =
−b+

√
b2 − 4ac

2a
we see that L[eαt cosβt+ ieαt sinβt] = 0. And then by the superposition principle

0 = L[eαt cosβt+ ieαt sinβt] = L[eαt cosβt] + iL[eαt sinβt]

Since the entire linear combination in the above formula is zero, both the real and imaginary parts individually are
zero. This says that if y1 denotes eαt cosβt and y2 denotes eαt sinβt, then each one has the property L[y1] = 0 and
L[y2] = 0. (Although in the real case we could use y1 and y2 for either solution, here it is better to associate y1
with the solution have the cosine function in it.) That is, we have constructed two solutions to the ODE from the
one complex-valued solution. Hopefully, they are not multiples of each other. That they are not multiples, can be
seen by comparing their values at t = 0 where y2 = 0 and y1 6== and at t = π

2β where y1 = 0 but y2 6= 0.
We now illustrate the above ideas by solving

y” + 14y′ + 74y = 0, y(0) = 11, y′(0) = −12

The characteristic polynomial is r2 + 14r + 74 and we find its roots by completing the square (much more reliable
than using the quadratic formula): r2 +14r+72 = −74+72, ie, (r+7)2 = −25. Therefore the roots are γ = −7±i5.
A complex solution is: e(−7+i5)t = e−7t(cos(5t) + i sin(5t)). Taking y1 and y2 to be its real and imaginary parts we
obtain

y1 = Re(e−7t(cos(5t) + i sin(5t)) = e−7t cos 5t y2 = Im(e−7t(cos(5t) + i sin(5t)) = e−7t sin 5t

The general solution can be written more neatly as follows:

y = e−7t(c1 cos 5t+ c2 sin 5t)

Its derivative is:
y′ = −7y + 5e−7t(−(c1 sin 5t+ c2 cos 5t)

Plugging in the initial conditions gives

y(0) = c1 = 11, y′(0) = −77 + 5c2 = −12 5c2 = 65 c2 = 13

Therefore, the solution to the IVP is:
y = e−7t(11 cos 5t+ 13 sin 5t)

At this point we should make some observations about the long time behavior of solutions.
The solutions in the complex case involve trig functions which are periodic (in fact, since the variable in the trig
function is βt, the period is 2π/β) but the presence of the exponential with a negative coefficient for t makes its
graph oscillate forever between two decaying exponentials. The only periodic feature of the trig functions that
remains in the graph of these solutions is the time between consecutive crossing of the t axis which is always π/β
(because there are two crossings of the t axis in each complete cycle) and there are infinitely many of them.
It is important to observe how the solution to this ODE changes as b or equivalently α = −b/2a varies. If b is
replaced by its negative, then the oscillations of the solution grow exponentially as t increases without bound. If



β is zero then the exponential function disappears from y1 and y2 and hence y = c1y2 + c2y2 is periodic with the
same period 2π/β. We will see later that such a combination of trig functions can be rewritten using a single cosine
function the is shifted and multiplied by the amplitude of the oscillations.
Now let us summarize the long time behavior of the solutions of any 2nd order constant coefficient linear homoge-
neous ODE just by looking at the roots of its characteristic polynomial (except for the repeated roots case which
we will deal with next time).
If the characteristic polynomial has complex roots we saw three different types of long time behavior are possible
depending on the real part of the complex roots. If the real part is zero we have period solutions (oscillations with
constant amplitude), if the real part is positive the solution oscillates forever between two decaying exponential
functions and if the real part is negative the solution oscillates forever between two growing exponential functions.
In all cases the intervals between crossings of the t-axis are of equal length and hence there are infinitely many of
crossings.
If the characteristic polynomial has two positive roots then all solutions decay (approach zero) with increasing
t. If the characteristic polynomial has two positive negative roots then eventually all nonzero solutions increase
or decrease without bound as t increases without bound, depending on the initial data (which determines c1 and
c2). Finally, if the characteristic polynomial has one positive and one negative root, then in addition to the above
behavior a solution can also decay as t increases without bound.
The case of double roots will be dealt with tomorrow.
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