
Math 251 Sections 1,2,10 Lect Notes 9/16/09

Today we cover several theoretical aspects that are helpful in applications. The first is the existence and uniqueness
guarantee for secont order linear ODE’s.

For this we assume that the ODE is written as 1y′′ + py′ + qy = g, where p, q and g are functions of t and the IVP
for this ODE is y(t0) = α and y′(t0) = β. If I is an open interval containing t0 but not any discontinuities of p, q
and g, then a unique solution exists on the entire interval I.

Let us see how this could be applied. For this purpose let us try to determine the largest interval on which the
following initial value problem has a unique solution:
(t2 − 4)y′′ + (t− 2)y′ + 3(t+ 2)y = 1

t−1 , y(0) = 1, y′(0) = 2

To answer the question we rewrite the ODE so that the coefficient of y′′ is 1: y′′ + 1
t+ 2)y

′ + 3
(t− 2)y =

1
(t− 2(t− 1)(t+ 2)) . The coefficients p, q, and g are discontinuous at −2, 1, 2. The largest open interval con-

tainig t = 0 not containing the above discontinuities is (−2, 1).

This is such an obvious adaptation of the first guarantee given for the first order case, that you may be wondering
why do we bother to state it instead of just saying that it is an “obvious adaptation”. Actually, the content is
subtly but significantly different in the two cases. And this is what should be emphasized: in the first order case
two solutions could not have graphs that intersect at a point (t1, y0) as long as the two functions p and g are
continuous at t1 (Recall, that at a point of continuity the solution to an IVP problem is unique. If two solutions
intersect at (t1, y1) then applying the uniqueness guarantee with this point as the initial condition implies that the
two solutions are one. This contradiction shows that graphs in fact cannot intersect at points of continuity of p
and g.

However, in the second order case we saw that the ODE the second order y′′+y′−2y = 0 has two solutions y1 = et

and y2 = e−2t which obviously intersect at the point (0, 1). This apparent anamoly disappears however when one
realizes that initial conditions for 2nd order ODE’s involve two conditions: y(t0) = α and y′(t0) = β Therefore, in
the second order case we conclude that two solutions cannot have graphs that intersect at a point (t0, α) and have
the same slope β there, as long as the two functions p and g are continuous near t0

You will probably be relieved to hear that we will not present any existence and uniqueness guarantees for the 2nd
order nonlinear ODE.

However, as another example of the meaning of the linear 2nd order guarantee we answer why y1(t) = t2 is not a
solution to any homoegeneous linear second order ODE with coefficients continuous near 0. The key to explaining
this behavior (or lack of it) is the fact that the zero funtion y2 = 0 is must be a solution to a homogeneous ODE.
Furthermore y1 and y2 have the same values at t = 0 and the same holds true for their derivatives. Therefore the
uniqueness guarantee says that only one of them can solve the ODE. But as we said there is no choice about the
zero funtion y2. That is whay y1 is not a solution.

We now consider another issue: for which pairs of solutions y1, y2 of a homogeneous 2nd order linear ODE’s do
we have the ability to solve any IVP. The answer is obviously not “for every pair”. Conside the situation where
y2 = 17y1(t) then c1y1 + c2y2 = (c1 + 17c2)y1 = Cy1 . So if y1(t0) happens to be 0 then we cannot solve for
examply the IVP with α = 1. On the other hand if y1(t0) happens to nonzero, then we cannot solve the the IVP
with α = 0, β = 1.

To answer the question posed in the previous paragraph we assume that y1 and y2 are two solutions and try to



find c1 and c2 so that the linear combination y = c1y1 + c2y2 satisfies the given IVP y(t0) = α, y′(t0) = β: i.e.,

y(t0) = c1y1(t0) + c2y2(t0) = α
y′(t0) = c1y

′
1(t0) + c2y

′
2(t0) = β

In order to find c2 we eliminate c2 by subtracting y2(t0) times the 2nd equation from y′2(t0) times the first equation:

c1 (y1(t0)y′2(t0)− y′1(t0)y2(t0)) = some number

The only conceivable obstacle to determining the value of c1 is the possiblility of the stuff inside the parenthesis
being zero. For this reason we assign a special name to that stuff: Wronskian of y1, y2 evaluated at t0. And we also
assign to it the special symbol W (y1, y2)(t0). Therefore whenever W (y1, y2)(t0) 6= 0 we are assured that for every
α and β the constants c1 and c2 which give a solution to the IVP can be found.

A pair of solutions y1, y2 with this property is called a fundamental pair or fundamental set. The linear
combination y = c1y1 + c2y2, which solves any conceivable IVP for this ODE is called the general solutions.

This explains how we could be so confident in dealing with the IVP immediately after we discovered last time that
y1(t) = et and y2(t) = e−2t are solutions of y′′ + y′ − 2y = 0. Indeed if we compute their Wronskian we see that it
is never zero.

W (y1, y2)(t) =
∣∣∣∣ et e−2t

et −2e−2t

∣∣∣∣ = −3e−t

Here the absolute value signs enclosing the 2×2 array denote the determinant of the array. So indeed the Wronskian
does not vanish and the IVP can be solved for any value of t0, α and β.

Frequently, one can spot functions which are multiples of each other and for these one need not go to the trouble of
finding their Wronskian in order to conclude that they do not form a fundamental set. In particular, the function
0, although a universal solution to linear homogeneous ODEs, can never be part of a fundamental set.

For example it is easy to pick a pair of functions from the following collection of functions that might be a
fundamental set of solutions for some homogeneous differential equation.

0, e3t, e3t+4, et/3

Since e3t+4 is a multiple of e3t only one of them could sever in a fundamental set formed by pairs of functions from
the above list and 0 can never be part of a fundamental set. This leaves two possibilities.

This leads us to suspect that there maybe some prefernce for fundamenntal sets that have some neat properties.
One possible preference is for a pair of solutions w1 and w2 that have the properties w1(0) = 1, y′1(0) = 0, y1(0) =
0, y′2(0) = 1 In the case y1 = et and y2 = e−2t the pair that meets this preference would be

w1(t) =
2
3
et +

1
3
e−2t w2(t) =

1
3
et − 1

3
e−2t

(Note: we actually found w1(t) during the last class and the process for finding w2 is entirely analogous.)

Finally the reason one would have for this preference is that an arbitrary IVP y(0) = α and y′(0) = β can now be
solved immediately by writing αw1 + βw2 eliminating the need to solve a new system of algebraic each time a new
IVP comes along.
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