Math 251 Sections 1,2,10 Lect Notes 9/14/09

We now leave 1st order ODE’s (for a little while) and turn our attention to 2nd order ODE’s. The general 2nd
order ODE in this course will be assumed to be expressible as:

y' = ft,y.y)

In the 1st order case we anticipated at some point that a constant of integration would appear in our solution
method and therefore we also sought to solve initial value problem y(tg) = yo. After we covered the existence and
uniqueness guarantees, we saw that this expectation was reasonable. In the 2nd order case we do the same sort of
wishful thinking and try to find a solution y that also satisfies the IVP: y(to) = «, y'(to) = 0, for given constants

a, 3

We will deal primarily with linear 2nd order ODE’s, i.e. ¥ = —py’ — qy + g where p, ¢ and g are given functions
of t, and any one, two, or even three of them maybe zero. We will say the ODE is autonomous if p,q and g are
constant functions. On the other hand we will say the 2nd order ODE has constant coefficients if p and ¢ are
constant but not necessarily g. This hints at the fact that usually we will write our 2nd order linear ODE in the
following standard form
v 'ty +ay=g

Another bit of terminology is that the 2nd order linear ODE is homogeneous if g is the zero function. An equivalent
way of describing linear homogeneous ODE’s is: a linear ODE is homogeneous if and only if the constant function
y = 0 is a solution. One needs to be aware of the fact that the word “homogeneous” is a widely used term in
mathematics and frequently has has little or no connection to the term that we defined here. For example, on page
49 in the textbook the word “homogeneous” refers to a different idea.

Chapter 3 begin with 2nd order linear constant coefficient homogeneous ODEs. i.e.,
ay’ +by +cy=0

where a is a nonzero constant and b, ¢ are just any constants. This conflicts a bit with the form above y”’+py’+qy = 0
which required that 1 be the coefficient of y”. The excuse for this inconsistency is that a is required to be nonzero
so if need be the transition from one form to other is immediate.

Finally one more bit of notation is that for any given function w = w(t), we denote the result of plugging in w into
the lhs (left hand side) of the equation by L[y]. In other words we are seeking to solve an equation that can be
written very briefly as:

Lyl =0 where Lyl = ay” + by’ +cy

We this point in the course where our strategy for solving an ODE will be following a hunch, as opposed to a
systematic procedure. As we see that our hunch is working for us we will present the mathematical results that
justify our conclusions.

Based on our experience in Calculus it is seems that the only function that has a chance of solving the ODE we
dealing with is an exponential function because it is the only one that has a derivative that apart from a constant
very closely resemble the original function.

Therefore we are inclined try to see if €™ is a solution. That is perhaps we can choose r so that L[e™] = 0. So

following this hunch we plug into the ODE:
Ll =a (e”)” +0b (e”)/ +c(e) = ar?e”™ + bre™t 4 ce™t = (ar2 +br + c) et

The result of our little experiment is very interesting. Note that produced a quadratic polynomial ar? +br+c times
an exponential e™; something that is very supportive of our hunch because this immediately tells us that if we
choose the 7 correctly we can in fact make e" be a solution. In many cases we can even produce two solutions. This
stems from our ability to find all posible roots of all quadratic polynomials. Specifically, sometimes it is possible
to factor a quadratic polynomial by inspection and thereby find its roots; but it is always possible to complete the
square and find either two real roots, or one repeated root, or two complex roots.

The polynomial ar? + br + ¢ is called the characteristic polynomial. Please remember this name. You will meet
it again in this course and frequently elsewhere in mathematics.



For today let’s assume the characteristic polynomial has two real roots r1,72. Then we have two solutions
y1 = et and yo = e"2t.

We now turn to IVPs for this type of equation. Consider a specific example: 3" + 3y’ — 2y = 0 and y(0) = 1,
y'(0) = 0. The characteristic polynomial is 72 +7 —2 = (r — 1)(r +2). There y; = e’ and yo = e~ Although both
y1 and yo satisfies the first half of the IVP, neither one satisfies the second. It is obvious we need to produce more
solutions and we recall that arbitrary constant that entered the calculation at the point where we integrated gave
us this ability in the first order case. In our current situation we followed a hunch instead of following a systematic
procedure; we did not do any integration and we are at loss on where one or two arbitrary constants could be
placed in the solution. Eg, if we try to add a constant, then we see that y; + C is not a solution of the current
ODE. Moreover it does not advance the cause of solving the IVP either.

A very simple idea bearing the name Superposition Principle from Physics comes to the rescue. It says that for
linear ODE’s and any two functions u = u(t) and w = w(t) and any two constants ¢; and ¢ the following holds:

Llciu + cow] = ¢y L[u] 4+ co L{w]

Although we are now focused on constant coefficient homogeneous 2nd order linear ODE’s, the Superposition
Principle is valid for any linear ODE (and linear PDE’s as well). In fact it makes very frequent appearances in all
of mathematics and all of its applications in various different disguises. You in fact encountered for the Superpostion
Principle for the first time when you learned the rules of basic arithmetic: The calculation of (2)(3)+(2)(4) can
be performed in two different ways: one can first add 3 and 4 and then multiply the result by 2 or one can first
multiply each of 3 and 4 by 2 and then add the result. In arithmetic this is called the distributive law. If says if
two numbers are to be added and then the result is to multiplied by 2 the answer would be the same as first doing
the multiplications by 2 and then adding the results.

Our version of the Superposition Principle says that if we are to take a linear combination of two functions (like
c1u + cow ) and then plug the result into to the lhs of a linear ODE, then the answer would be the same as
first plugging into the lhs of the linear ODE and then taking the linear combination of the results. The actual
verification of the Superposition Principle is very simple and actually it is based on the distributive law and the
analogous property for derivatives.

A very simple consequence is the following fact: If y; and ys are two solutions to a linear homogeneous ODE, then
so is any linear combination c1y; + coys. Not it is very easy to see exactly why this is true:

Liciyr + cay2) = e1L[y1] + coL[y2] =0

Going back to solving the IVP for the homogeneous constant coefficient linear ODE we considered above, we see
that a linear combination of the two solutions that we found is also a solution and that linear combination contains
c1,co that we can choose any way we like. Let’s see if indeed the linear combination y = cie’ + +cpe™2 can be
made to solve y(0) = 1,¢'(0) = 0.

For this purpose we compute 4’ = cie’ + —2coe™2! and plug in y = 1, = 0 in the formula for y and ¢/ = 0,t = 0
in the formula for 3’. We have two linear equations with two unknowns c1, ca:

1201+02 0261—202
Multiplying the first by 2 and adding to the second gives: ¢; = 2/3,co = 1/3. That is, the solution to the IVP is
2

1
4t L2t
36 ++36

One final point. The equation for which we solve the IVP is autonomous. Also in the 2nd order case, this implies
that any solution y(t) has the property that y(¢ — ) is a solution for any gamma. This means that if we are faced
with a more complicated IVP like (999999) = 1,4'(999999) = 0, then we simply shift the variable ¢ in our current
solution to obtain the solution to the new IVP:

%et—999999 4 +%6_2(t_999999)

(Note that most calculators will refuse to evaluate exp(999999).)
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