
Math 251 Sections 1,2,10 Lect Notes 8/31/09

A significant portion of this course is devoted to analyzing physical phenomena via DE models; this process is
called mathematical modelling. We begin a week of modelling with a model for the balance in savings accounts
and loans which accumulate interest and to which payments are made over a period of time.

Note that although the objectives of a savings account and a loan are distinct, from the view of modeling the
balance in the account over a period of time, they can me modeled by the same differential equation. Let P = P (t)
be the balance in either one at time t years. There are two causes for a change in P over time: interest is calculated
and added to the account and payments are made to the account. We will assume that both interest is credited
to the account and constant payments are made continuously. The latter is a departure from physical reality but
it allows us to come up with a very simple linear ODE for P . (Because, one cannot stand a the teller’s window
making a small payment each and every single second of even a few not hours, not to mention a few years.)

In the case of the savings the payments increase the balance; whereas, for in the case of the loan the payments
reduce the balance P . In either case the constant rate of payments can be represented as k dollars per year, with
the understanding that in the first case k is positive and in the second negative.

In both cases the crediting of interest increases P . And we now focus on finding an expression for the rate of change
due to compounding the interest continuously and assume temporarily that k is zero.

We introduce the notation P0 for initial balance in an account and r for the annual rate (a percent expressed
as a decimal). If interest is credited only at the end once a year the balance at the end of the first year is
P (1) = P0 + rP0 = (1 + r)P0. If the interest is compounded semiannually (i.e. paid into the account twice a year)
then the balance at 1/2 year is P (1/2) = (1 + (r/2))P0 and if no withdrawls are made until the end of the year the
balance at the end of the first year will be P (1) = (1 + (r/2))P (1/2) = (1 + (r/2)2P0 In this fashion we see that if
there are n equally spaced compounding periods in a year, then P (1) = (1 + (r/n)nP0.

We now assume that interest is compounded continuously. This is impossible to achieve even with extremely fast
computers but by taking the limit as n→∞ gives us a formula to represent this extreme situation:

P (1) = lim
n→∞

(1 + (r/n))nP0

This limit is evaluated very easily. In fact in Math 140/141 you saw that

e = lim
m→∞

(1 + (1/m))m

The limit which the bank needs to evaluate can be converted to this one using the simple substitution r/n = 1/m.
Then n = rm and

P (1) = lim
n→∞

(1 + (r/n))nP0 = lim
m→∞

(1 + (1/m))rmP0 =
(

lim
m→∞

(1 + (1/m))m
)r

P0 = erP0

From this we easily see that P (2) = erP (1) = e2rP0, P (3) = erP (2) = e3r
P 0 and in general P (t) = ertP0. That is

the balance P grows exponentially if the interest rate is compounded continuosly. By differentiation we arrive at
the conclusion that

P ′(t) = rertP0 = rP (t)

Or, more briefly,
P ′ = rP

And if we now assume that k is nonzero, then

P ′ = rP + k with P (0) = P0

Now let’s consider some problems related to this model.

Suppose a person opens an IRA (Retirement Savings Account) with an initial deposit of $103. At what annual
rate k must money be deposited so that at the end of 30 years the balance in the account will be 106. We assume
that the annual interest rate of 10% is compounded continuously.



The ODE with initial condition that models this problem is:

P ′ = 0.1P + k, and P (0) = 103

we are also given that P (30) = 106 and we need to find k. We solve the above IVP using the solution metho for
linear ODE’s: The integrating factor for

P ′ − 0.1P = l

is e−0.1t. Mutliplying through gives
(Pe−0.1t)′ = ke−0.1t

Integrating both sides with respect to t gives:

Pe−0.1t = −10ke−0.1t + C

We can plug in the initial condition to find that C = P0 + 10k = 103 + 10k right away. I.e.,

Pe−0.1t = −10ke−0.1t + P0 + 10k = −10ke−0.1t + 03 + 10k

We now plug in t = 3 and P = 106 to determine k.

106e−3 = −10ke−3 + 103 + 10k

We can either use a calculator to solve for k or we can use the approximation e3 ≈ 20 to solve for k by hand. Using
the latter we get

5(104) = −k

2
+ 103 + 10k

So

k =
49(103)

19
2

= 5157.90

So over a period of 30 years 1000 + 30× 5157.90 = 155736.84 is put into the account but a 106 dollars accumulates
due to the compounding of the interest.

Loans are modeled by the same ODE except that the quantity k representing the annual rate of payment is negative
because in this case it reduces the rate of growth of the loan. (It is not advisable to change the ODE to reflect this
fact by changing the plus sign to a minus sign).

So, at a 10% annual rate, what is the largest 30 year mortgage that is possible if the most one can afford to pay is
$104 per year.

The ODE and formula for P in this problem are exactly as for the one above except now k = −104 , P (30) = 0
and it is P0 that is unknown.

Pe−0.1t = −10ke−0.1t + P0 + 10k = 105e−0.1t + P0 − 105

Finally we plug t = 30 and P = 0, to obtain the following equation of P0

0 = 105e−3 + P0 − 105 =
105

20
+ P0 − 105

So
P0 = 105(1− 1

20
) =

19
20

105 = 9.5 ∗ 104
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