
Math 251 Sections 1,2,10 Lect Notes 8/27/09

We now move from separable ODE’s to the 2nd of the three types of 1st order ODE’s for which we will have explicit
solution techniques in this course. Recall that we are assuming in this course that our 1st order ODE’s can be rewritten
in the form y′ = f(t, y). In general f can be a rather complicated function of t and y. We focus on a particularly simple
f that does nothing more than multiply y by a function of t and also perhaps adds another function of t.

Definition The 1st order ODE y′ = f(t, y) is called linear if the right hand side can be rewritten as follows:

y′ = g(t)− p(t)y or y′ = g − py

Here g and p are functions only of t and either one may be a constant function including the constant function zero. (The
minus sign in the above definition appears as a matter of convenience.)

Examples of linear ODE’s are: y′ = y, y′ = cos(t), y′ = 4− 2y, y′ = et − 2y, y′ = et + t−1y. Some of these examples are
also separable. Examples of nonlinear ODE’s are y′ = 1/y, y′ = cos(ty). In short an ODE is linear iff the only operations
perfomed on y on the right hand side is multiplication by a function of t and/or addition of a function of t.

Applying term by term integration directly to a linear ODE does not lead to a solution; in fact it only leads to a dead
end.

For example consider the ODE Consider the following ODE: y′ = e−t−3y. We are very tempted to try to solve this ODE
by integrating each term:

∫
y′ dt =

∫
e−t dt− 3

∫
y dt

Two of the three integrals above are easy to compute. The third one, however, is impossible since y is an unknown
function of t and consequently its integral is just as unknown.

But shall see that it is possible to alter the ODE by multiplying it through by an “integrating factor” and obtain a very
easily solved ODE, at least in theory. For this purpose we first move the term −3y to the left hand side of the ODE:

y′ + 3y = e−t

and then we ask whether it is possible to multiply this equation by an exponential eat so that the left hand side of

(y′ + 3y)eat = e−teat

is the derivative of a product yeat. If the answer is affirmative, then we can integrate each side separately:

d

dt

(
yeat

)
= eat−t

There is nothing easier than integrating the derivative of a function and integrating the exponential on the right is nearly
as easy.

So let’s look for eat. What we are looking for is:

(y′ + 3y)eat =
(
yeat

)′



We apply the distributive law to the left hand side and the product rule to the right hand side:

y′eat + 3yeat = y′eat + ayeat

Obviously the equality of the two expressions above holds exactly when a = 3 and in this case our ODE is:(
ye3t

)′
= e2t

Integrating both sides: ∫ (
ye3t

)′
dt =

∫
e2t dt

ye3t =
1
2
e2t + C

Finally we obtain the following formula for y:

y =
1
2
e−t + Ce−3t

If we are given an intial condition, for example y(0) = 1, then the value of C can be found by simply setting t = 0 and
y = 1 and solving for C in the above formula. One observation that ought to be made is that solutions of this ODE
approache zero after a long time, regardless of their value at t = 0.

Let’s solve some other ODE’s using this procedure.

Consider the following ODE: y′ = t + 3y It is obviously a linear ODE and we rewrite it as

y′ − 3y = t

By analogy to the above we see that an integrating factor is e−3t(
ye−3t

)′
= e−3tt

The integral of the right hand side requires integration by parts:

ye−3t =
∫

e−3tt dt = −1
3
e−3tt +

1
3

∫
e−3t dt = −1

3
e−3tt− 1

9
e−3t + C

y = −1
3
t− 1

9
+ Ce3t

As far as long time behavior goes, we note that if y(0) is greater than 1/9, then the solution tends to ∞ as t→∞.

Also, if y(0) <= −1/9, then the solution approaches −∞ as as t→∞.

After after Maxima is used to solve an ODE, entering the the command

method;

asks it to reveal the method is used. For example,



deqn: ’diff(y,t)-y^2=0 ;
soln: ode2(deqn,y,t) ;
method;

and

deqn: ’diff(y,t)-y=0 ;
soln: ode2(deqn,y,t) ;
method;

Maxima’s response is “separable” for the first and “linear” for the second.
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