1. Consider the function

$$
f(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<1 \\
1 & \text { if } & 1 \leq x<2 \\
0 & \text { if } & 2 \leq x
\end{array}\right.
$$

Find the sine series of $f(x)$ and the cosine series for $f(x)$ on the interval $[0,3]$
Use summation notation to express your answer.

ANS.

$$
\begin{aligned}
a_{0} & =\frac{1}{3} \text { area below } f_{e}(x)=\frac{2}{3} \\
a_{n} & =\frac{1}{3} \int_{-3}^{3} f_{e}(x) \cos \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{2}{3} \int_{0}^{3} f(x) \cos \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{2}{3} \int_{1}^{2} f(x) \cos \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{2}{3} \int_{1}^{2} 1 \cos \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{2}{3} \frac{3}{n \pi}\left[\sin \left(\frac{n \pi}{3} x\right)\right]_{1}^{2} \\
& =\frac{2}{n \pi}\left(\sin \left(\frac{n \pi}{3} 2\right)-\sin \left(\frac{n \pi}{3}\right)\right) \\
b_{n} & =\frac{1}{3} \int_{-3}^{3} f_{o}(x) \sin \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{2}{3} \int_{0}^{3} f(x) \sin \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{2}{3} \int_{1}^{2} \sin \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{-2}{3} \frac{3}{n \pi}\left[\cos \left(\frac{n \pi}{3} x\right)\right]_{1}^{2} \\
& =\frac{-2}{n \pi}\left(\cos \left(\frac{n \pi}{3} 2\right)-\cos \left(\frac{n \pi}{3}\right)\right)
\end{aligned}
$$

Using summation notation the cosine series is:

$$
\frac{1}{3}+\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(\sin \left(\frac{n \pi}{3} 2\right)-\sin \left(\frac{n \pi}{3}\right)\right) \cos \left(\frac{n \pi}{3} x\right)
$$

Using summation notation the sine series is:

$$
\sum_{n=1}^{\infty} \frac{-2}{n \pi}\left(\cos \left(\frac{n \pi}{3} 2\right)-\cos \left(\frac{n \pi}{3}\right)\right) \sin \left(\frac{n \pi}{3} x\right)
$$

2. Assume that the thermal diffusivity of a thin metal $\operatorname{rod} \alpha^{2}=1.9$ and the length of the rod is 3 cm . Assume that the initial temperature of the rod is given by 50 times the function $f(x)$ given in Problem 1 and that the left and right ends of the rod are placed in ice water. Find the temperature $u(x, t)$ of the rod at any time $t>0$. Approximately what will the temperature of the rod be at $x=1$ after a long time?

ANS.

$$
u(x, t)=50 \sum_{n=1}^{\infty} \frac{-2}{n \pi}\left(\cos \left(\frac{n \pi}{3} 2\right)-\cos \left(\frac{n \pi}{3}\right)\right) \sin \left(\frac{n \pi}{3} x\right) e^{-1.9(n \pi / 3)^{2} t}
$$

After a long time the temperature of the entire rod will be approximately that of the ice water.
3. Again assume that the thermal diffusivity of a thin metal rod $\alpha^{2}=1.9$ and the length of the rod is 3 cm . Also assume that the initial temperature of the rod is given by the function

$$
g(x)=\left\{\begin{array}{ccc}
5+10 x & \text { if } & x<1 \\
15+10 x & \text { if } & 1 \leq x<2 \\
5+10 x & \text { if } & 2 \leq x
\end{array}\right.
$$

Finally assume that the left end of the rod is held at 5° and the right is held at 35°. Find the temperature $u(x, t)$ of the rod at any time $t>0$. What will the temperature of the rod be at $x=2$ after a long time?

ANS. Since the ends of the rod are held at 5° and at 35° we seek the steady state solution $u_{\text {steady }- \text { state }}(x, t)=$ $5+10 x$ for these temperatures at the ends and write our solution as $u(x, t)=u_{\text {steady }- \text { state }}(x, t)+u_{\text {transient }}(x, t)$ The transient solution will have 0° at the ends and initial temperature equal to the given temperature $g(x)$ minus the steady state (initial) temperature:

$$
g(x)-(5+10 x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<1 \\
10 & \text { if } & 1 \leq x<2 \\
0 & \text { if } & 2 \leq x
\end{array}\right.
$$

We see that this is exactly 10 times the $f(x)$ given in Problem 1 . Therefore,
$u(x, t)=u_{\text {steady }- \text { state }}(x, t)+u_{\text {transient }}(x, t)=5+10 x+10 \sum_{n=1}^{\infty} \frac{-2}{n \pi}\left(\cos \left(\frac{n \pi}{3} 2\right)-\cos \left(\frac{n \pi}{3}\right)\right) \sin \left(\frac{n \pi}{3} x\right) e^{-1.9(n \pi / 3)^{2} t}$
4. Assume that the thermal diffusivity of a thin metal $\operatorname{rod} \alpha^{2}=1.9$ and the length of the rod is 3 cm . Assume that now both ends of the rod are insulated and that the initial temperature distribution by 36 times $f(x)$ given in Problem 1. Find the temperature $u(x, t)$ of the rod at any time $t>0$. What will the temperature be after a long time at $x=2$?

ANS. When the ends are insulated we need to use the cosine series for $f(x)$, which we found in Problem 1:

$$
u(x, t)=12+36 \sum_{n=1}^{\infty} \frac{2}{n \pi}\left(\sin \left(\frac{n \pi}{3} 2\right)-\sin \left(\frac{n \pi}{3}\right)\right) \cos \left(\frac{n \pi}{3} x\right) e^{-1.9(n \pi / 3)^{2} t}
$$

The steady state solution to this insulated ends problem is 12 . That is the temperature the entire rod approaches after a long time. It is also the average temperature of the rod at any time t.
© 2009 by Moses Glasner

