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We return to 2 × 2 autonomous linear homogeneous systems x′ = Ax. At the risk of belaboring the obvious, we
mention that 0 is a crtical point of the system, that is A0 = 0. Another way of stating this is that the constant
solution x = 0 is an equilibrium solution of this system.

Today we will try to sketch phase portraits for 2× 2 linear systems. We will see there there are six different types of
of phase portraits. These are associated with names that are given to their critical points at 0.

Before we start let us stat two general principles that make this task feasible. First, for the autonomous linear systems,
there is a uniqueness and existence guarantee which can be extrapolated from the textbook’s Theorem 7.1.2 at the
bottom of page 359. A consequence of the uniqueness part is that two trajectories of a linear system of the sort we
are considering do not intersect. You have already seen some trajectories of some systems heading towards the origin.
However, according to what we have just said, these never reach the origin, because the origin itself is a solution, an
equilibrium solution.

The second principle is that nearby trajectories of our systems have nearly the same directions. This is helpful in
every trajectory base on just a few trajectories.

To see how the process of sketching a phase portrait works, consider a system x′ = Ax for which we have aleardy

found eigenvalues r1 = 2 and r2 = −1 and the corresponding eigenvectors ξ1 =
(

1
1

)
and ξ2 =

(
−1
1

)
. That is,

the general solution is

x = c1e
2t

(
1
1

)
+ c2e

−t

(
−1
1

)
. Last time we already sketched the basic four trajectories for this system. Now let us consider an arbitrary point in

the plane
(
β
α

)
and graph the trajectory that goes through that point at t = 0. Since the first term in x is dominant

for large t, this trajectory must be going away from the origin in a direction parallel to the vector
(

1
1

)
for large t.

And as t increase from very negative values of t towards zero, the trajectory must be heading towards the origin in

a direction parallel to the vector
(
−1
1

)
. The fact this fifth trajectory does not intersect any of the basic four and

goes through the point
(
β
α

)
determines the trajectory rather completely. Click here for the Direction field Java

applet to check your sketch

The critical point with above phase portrait is a called saddle. We also introduce some descriptive language concerning
the long time behavior of solutions of systems of ODE’s. We say that a critical point (bzero in our example) is unstable
if there is a trajectory which starts close to the the critical point, yet goes far away as t→∞. Note that whenever we
have two eigenvalues of opposite sign, 2 of the basic four will approach the orgin whereas two of the basic four will go
away from the origin with increasing t. Therefore, this will always be unstable and produce a phase portrait with the
appearance indicated above.

We now suppose that that the linear system is somewhat different, perhaps is x′ = Bx and that the general solution
is found to be:

x = c1e
−2t

(
1
1

)
+ c2e

−t

(
−1
1

)
. We note that every solution approaches the critical point at the origin as t→∞, including the basic four trajectories.
However, only the basic four trajectories maintain their directions of for all values of t in the interval (−∞,∞). This
is because the term containing e−t is dominant when t is very large (and positive), whereas e−2t is dominant when
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t is very negative. Therefore, every trajectory is parallel to the direction of
(

1
1

)
when t is very negative and then

switch direction to be parallel to
(
−1
1

)
as t becomes very large and as x approaches the origin. Click here for the

Direction field Java applet to check your sketch

In this case the critical point at the origin is called a node. It is also said to be asymptotically stable because every
solution that starts sufficiently close to the origin eventually approaches the origin. (Note that the words sufficiently
close are superfluous in this situation because every trajectory no matter where it starts approaches the origin.) This
behavior will occur whenever we look at a linear system with two negative eigenvalues.

Finally, we mention other distinctions between a saddle and a node. An obvious one that comes to mind is that a saddle
is always unstable whereas a node can be either asymptotically stable or unstable. A somewhat more sophisticated
distinction is that for a saddle every trajectory, except the basic four, runs off to the “frontier” of the xy − plane as
the variable t approaches infinity and as the variable t approaches minus infinity. In the case of a node this is true for
every trajectory but only as the variable t approaches one of infinity and minus inifinity but not both (as t approaches
the other one, the trajectory must approach the critical point at the origin). (Always remember the trajectories never
reach the origin.) This is simply a way of stating geometrically that the eigenvalues have opposite sign.
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