
Math 251 Sections 1,2,10 Lect Notes 10/23/09

We return to a linear 2 × 2 homogeneous system of first order ODE’s with an IVP:

x′ = Ax x(t0) =

(

β

α

)

We search for a solution. In view of the close connection with 2nd order linear constant coefficient ODE’s we might

expect to find a solution x of the the form ertξ = ert

(

ξ

η

)

. Of course we only are interested in finding ertξ with

ξ not the zero vector because it is rather obvious that 0 solves this this system.
Indeed a vector solution of a system represents the solution and the derivative of the solution of the 2nd order
ODE.
We plug x = ertξ into the system to see what properties ertξ needs to have. For the left hand side we get x′ = rertξ

whereas for the right hand side we get Ax = ertAξ. Subtracting these gives

0 = Ax − x′ = ertAξ − rertIξ = ert (A − rI) ξ

The symbol I denotes the identity matrix

(

1 0
0 1

)

which has the property Iξ = ξ for any ξ. Since ert is never

0 we must have
(A − rI) ξ = 0

Recall that we settled this algebra question already. A nontrivial solution to this algebraic equation exists if
det (A − rI) = 0 This equation is called the characteristic equation. The use of the same name for this
polynomial equation as for the polynomial equation occuring in the solution of a second order constant coefficient
linear homogeneous ODE is not an accident. If one is converted t other the two polynomial equations are the same
and therefore should bear the same name.
We start by assuming that that that characteristic equation has two real roots r1 and r2. In this case we can find
two nonzero vectors ξ1 ξ2 with the property

(A − r1I) ξ1 = 0 and (A − r1I) ξ1 = 0

The numbers r1, r2 are called eigenvalues and the corresponding vectors ξ1 and ξ2 are called eigenvectors. Of
course one must not confuse which eigenvector belongs to which eigenvalue.
We illustrate these ideas by solving the system

x′ =

(

1 2
2 1

)

x

The characteristic polynomial is:

det (A − rI) = det

(

1 − r 2
2 1 − r

)

= r−2r − 3

and this has roots r1 = 2, r2 = −1. We seek the corresponding eigenvectors. For r1:

A − (2)I =

(

−1 1
1 −1

)

Note that at this point you must have a matrix whose rows are multiples of each other. If not there is an error in
the calculations already at this point and there is no point in going any further. An eigenvector must be found in
less than 8 seconds:

ξ1 =

(

1
1

)



Of course any nonzero multiple of an eigenvector is an eigenvector. For r2:

A − (−1)I =

(

2 2
2 2

)

Note that again the rows are multiples of each other. In much less than than 8 seconds we find

ξ2 =

(

−1
1

)

So we now have two solutions to the system:

x1 = e2t

(

1
1

)

x2 = e−t

(

−1
1

)

Again, from our experience with the superposition principle we would expect that another solution is

x = c1x1 + c2x2 = c1e
2t

(

1
1

)

+ c2e
−t

(

−1
1

)

for any c1, c2

Therefore, if we are asked to solve the IVP x(0) =

(

−1
13

)

then we seek to solve the following pair of linear

equations for c1, c2:

c1

(

1
1

)

+ c2

(

−1
1

)

or equivalently
c1 − c2 = −1
c1 + c2 = 13

There are four IVP that you should be able to solve instantly.

i. x(0) =

(

1
1

)

ii. x(0) =

(

−1
−1

)

iii. x(0) =

(

−1
1

)

iv. x(0) =

(

1
−1

)

The solutions are

i. e2t

(

1
1

)

ii. e2t

(

−1
−1

)

iii. e−t

(

−1
1

)

iv. e−t

(

1
−1

)

The trajectories of these solutions are also rather important, as you will see next time. So practice sketching them.


