Last time we introduced the formula for finding the Laplace transform of functions involving the unit step function:

$$
\text { If } \quad \mathcal{L}\{\mathrm{u}(\mathrm{t}) \mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{~s}) \quad \text { then } \quad \mathcal{L}\{\mathrm{u}(\mathrm{t}-\mathrm{c}) \mathrm{f}(\mathrm{t}-\mathrm{c})\}=\mathrm{e}^{-\mathrm{cs}} \mathrm{~F}(\mathrm{~s})
$$

We illustrated how it can be used. We saw that frequently there was a bit of a complication because frequently we need to use it to find the Laplace transform of a product with the shift on variable of u and and the shift on the variable of f not being the same. There is no such difficulty in using the above shift formula to find inverse Laplace transform of $e^{-c s} F(s)$ whenever it is possible to find the inverse Laplace transform of $F(s)$. The process is clear. We list the steps needed to execute it:
I. Ignore $e^{-c s}$, temporarily.
II. Find $f(t)$ so that $\mathcal{L}\{\mathrm{u}(\mathrm{t}) \mathrm{f}(\mathrm{t})\}=\mathcal{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{s})$
III. Make sure $f(t)$ is multiplied by $u(t)$.
IV. Replace every occurence of t in $u(t) f(t)$ by $(t-c)$. (Make sure adequate parenthesis are used.)

We illustrate this by finding the inverse Laplace transform of $e^{-6 s} \frac{1}{s+7}$. For this purpose we first observer that $\mathcal{L}\left\{\mathrm{e}^{-7 \mathrm{t}}\right\}=\frac{1}{\mathrm{~s}+7}$, ignoring the ${ }^{-6 s}$. We then multiply by $u(t)$ and then shift every t to $t-6$:

$$
\mathcal{L}\left\{\mathrm{u}(\mathrm{t}-6) \mathrm{e}^{7(\mathrm{t}-6)}\right\}=\mathrm{e}^{-6 \mathrm{~s}} \frac{1}{\mathrm{~s}-7}
$$

Let's use Laplace transforms to solve the following IVP:

$$
y "+9 y=u(t-4) \quad y(0)=1, y^{\prime}(0)=0
$$

We set $\mathcal{L}\{y(t)\}=Y(s)$ and take Laplace transforms of both sides:

$$
s^{2} Y-s+9 Y=e^{-4 s} \frac{1}{s}
$$

and therefore

$$
Y=\frac{s}{s^{2}+3^{2}}+e^{-4 s} \frac{1}{s\left(s^{2}+3^{2}\right)}
$$

We easily find the partial fraction expansion:

$$
\frac{1}{s\left(s^{2}+3^{2}\right)}=\frac{1}{9}\left(\frac{1}{s}-\frac{s}{s^{2}+3^{2}}\right)
$$

Therefore,

$$
\mathcal{L}\left\{\frac{1}{9}(1-\cos 3 \mathrm{t})\right\}=\frac{1}{\mathrm{~s}\left(\mathrm{~s}^{2}+3^{2}\right)}
$$

and

$$
\mathcal{L}\left\{\frac{1}{9}(1-\cos 3(\mathrm{t}-4)) \mathrm{u}(\mathrm{t}-4)\right\}=\frac{\mathrm{e}^{-4 \mathrm{~s}}}{\mathrm{~s}\left(\mathrm{~s}^{2}+3^{2}\right)}
$$

Finally,

$$
\mathcal{L}\left\{\cos 3 \mathrm{t}+\frac{1}{9}(1-\cos 3(\mathrm{t}-4)) \mathrm{u}(\mathrm{t}-4)\right\}=\mathrm{Y}
$$

Let's now use Laplace transforms to solve the following IVP:

$$
y^{\prime}+2 y=t u(t-1) \quad y(0)=1
$$

We set $\mathcal{L}\{y(t)\}=Y(s)$. We start taking Laplace transforms of both sides:

$$
s Y-1+2 Y=e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)
$$

Therefore,

$$
Y=\frac{1}{s+2}+e^{-s}\left(\frac{1}{s^{2}(s+2)}+\frac{1}{s(s+2)}\right)
$$

We easily find the partial fraction expansion:

$$
\frac{1}{s^{2}(s+2)}+\frac{1}{s(s+2)}=\frac{1 / 4}{s}+\frac{1 / 2}{s^{2}}-\frac{1 / 4}{s+2}
$$

Therefore,

$$
\mathcal{L}\left\{\frac{1}{4}+\frac{1}{2} \mathrm{t}\right\}-\frac{1}{4} \mathrm{e}^{-2 \mathrm{t}}=\left(\frac{1}{\mathrm{~s}^{2}(\mathrm{~s}+2)}+\frac{1}{\mathrm{~s}(\mathrm{~s}+2)}\right)
$$

And we finally arrive at:

$$
\mathcal{L}\left\{\mathrm{e}^{-2 \mathrm{t}}+\mathrm{u}(\mathrm{t}-1)\left(\frac{1}{4}+\frac{1}{2}(\mathrm{t}-1)-\frac{1}{4} \mathrm{e}^{-2(\mathrm{t}-1)}\right)\right\}=\mathrm{Y}
$$

© 2009 by Moses Glasner

