
Math 251 Sections 2,10,11 Lec Notes 10/10/08

As prepartion to Laplace transforms we recall a couple of ideas and a formula usually covered in Math 141.

A function f is said to be piecewise continuous on a closed interval if it has only a finite number of discontinuities,
which are no worse than jump discontinuities. Ie, the one sided limits exist but the reason for the discontinuity is that
they do not agree. It is piecewise continuous everywhere is it is piecewise continuous on every closed interval. We
also note that many of the properties of integral studied in Math 141 carry over to piecewise continuous functions.
Indeed the integral over an interval is simply the sum of the integrals over the finite number of subintervals on which
the function is continuous.

Specifically, we need to recall the definition of improper integral:∫ ∞
0

f(t) dt = lim
A→∞

∫ A

0

f(t) dt

As an example let us compute the following:
∫∞
0

ect dt In case c = 0 it is obvious that this improper integral diverges.
We assume c 6= 0 and we plug into the above definition:∫ ∞

0

ect dt = lim
A→∞

∫ A

0

ect dt =
1
c

lim
A→∞

[
ect
]A
0

=
1
c

lim
A→∞

(
1− ecA

)
We observe that the last limit does not exist if c > 0 and it is equal to −1

c whenever c < 0.

The Laplace transform is a device that enables us to replace the process of solving IVP’s for linear constant coefficient
differential equations with solving linear algebraic equations.

Although the table of Laplace transforms given in the textbook will be provided for the examination, it is a loosing
battle to try to use that table to solve problems. A much better strategy is to memorize the eight Laplace transform
given out with today’s FAQ, instead of trying to navigate through the maze of 19 formulas which appear in the
textbook’s table.

The definition of the Laplace transforms of f(t), a piecewise continuous function defined on [0,∞) is as follows. If we
set L{f(t)} = F(s), then

F (s) =
∫ ∞

0

e−stf(t) dt

A general property of Laplace transform is that it satisfies the Superposition Principle, ie, the Laplace transform of a
linear combination of two function can be found by taking the same linear combination of the Laplace transforms.

Another property that f(t) must have in oder for the improper integral, and hence the Laplace transform to converge
is that it have exponential growth. This means that we can find constants M and m such that |f(t)| ≤ Meat for
all sufficiently large t. Obviously, eat has this property. Also any bounded function has this property. But et2 does
not have this property. Because if et2 ≤ Memt for some M and m and all sufficiently large t, then taking natural
logarithms of both sides would implty that t2 ≤ ln M + mt for all sufficiently large. But it is impossible for a parabola
to stay below a fixed line for all sufficiently large t.

Our first example of calculating the Laplace transform is L{eat}, for some constant a. We apply the definition:

L{eat} =
∫ ∞

0

e−steat dt

=
∫ ∞

0

e−(s−a)t dt

=
−1

−(s− a)
=

1
s− a

Here we used the formula for the improper integral of ect which we derived last time. Of course, the Laplace transform
only exists when s − a < 0, ie, s > a. An important special case of this a = 0 which gives the formula: L{1} = 1

s .
Although the derivation of the above depends on a being real, if we believe the above formula also for complex values
of a, then we easily arrive at the formulas for the Laplace transform of sine and cosine.



That is, we set a = ib and use

L{eibt} =
1

s− ib
=

s + ib
s2 + b2

Separating real and imaginary parts of the above gives the formulas we seek:

L{cos(bt)} =
s

s2 + b2 L{sin(bt)} =
b

s2 + b2

Our goal for today is to solve a simple first order linear ODE with initial value problem. For this purpose we need one
more formula which expresses the Laplace transform of the derivative of a function in terms the Laplace transform of
the original function.

We have a clue to this in the above formulas for the Laplace transform of sine and cosine. To make the clue more
obvious we rewrite the above with the constant b replaced by 1:

L{sin(t)} =
1

s2 + 1
L{cos(t)} =

s
s2 + 1

Since cosine is the derivative of sine and since the right hand side of the second formula in the line above is s times
the right hands side of the first formula, one might conjecture the following

If L{g(t)} = G(s), then L{g′(t)} = sG(s)

However, thinking a moment it is obvious this cannot be true in general because the derivative of cosine is negative
sine, nevertheless −s times the right hand side in the second formula does not give the right had side in the first.

On the other hand, perhaps flaw in our conjecture is due to the fact that sine is equal to zero at t = 0 and cosine is
not. So let us amend our conjecture as follows:

Ifg(0) = 0 and if L{g(t)} = G(s), then L{g′(t)} = sG(s)

It turns out that this is correct. If we are given a general piecewise continuous f(t) then we set g(t) = f(t)− f(0) and
apply our modified conjecture to g(t) which does have g(0) = 0 to conclude that

L{f ′(t)} = L{g′(t)} = sG(s)
= s (L{f(t)} − L{f(0)}) = s (F (s)− L{f(0)})

= s

(
F (s)− f(0)

1
s

)
= sF (s)− f(0)

Having this formula at our disposable, enables us to solve the following IVP using Laplace transforms:

y′ + 2y = e2t, y(0) = 3

Indeed set L{y(t)} = Y(s), new unknown function of s. Then taking Laplace transforms of each side gives the following
algebraic equation involving Y :

sY − 3 + 2Y =
1

s− 2
Solving for Y gives:

Y =
3

s + 2
+

1
(s− 2)(s + 2)

It is easy to see that the first term on the right hand side is: L{3e−2t}. What about the second term? We recall that
by partial fractions:

1
(s− 2)(s + 2)

=
1/4

s− 2
− 1/4

s + 2

Therefore, 1
4L{e

2t} − 1
4L{e

−2t} is the second term on the right hand side. We conclude that

Y =
11
4
L{e2t} − 1

4
L{e−2t}

and finally arrive at the solution

y =
11
4

e2t − 1
4
e−2t

c©2009 by Moses Glasner


